TEMA3. BIOENERGÉTICA MITOCONDRIAL.
Hipótesis quimiosmótica y potencial electroquímico de protón
Según la hipótesis quimiosmótica sostenida por el investigador P. Mitchell, que es la que goza de mayor prestigio, y puede además explicar la síntesis de ATP tanto en la mitocondria como en el cloroplasto. La energía liberada por el transporte de electrones se utiliza para bombear protones desde la matriz al espacio intermembranal (en mitocondrias); o desde el estroma al interior del tilacoide (en cloroplastos). El bombeo de protones se realiza a través de transportadores localizados en complejos enzimáticas existentes en la membrana (de las crestas mitocondriales o membrana tilacoidal, según el caso).
De esta manera se genera un gradiente electroquímico de protones que ejerce lo que se conoce como fuerza protonmotriz, ya que cuando los protones atraviesan de nuevo la membrana interna (mitacondrial o tilacoidal) a favor del gradiente, lo hacen a través del sistema ATP-sintetasa, que se encuentra en dichas membranas, donde la energía protonmotriz se transforma en energía de enlace en moléculas de ATP (1).
Estructura y función de la cadena respiratoria
- Organización de la cadena
A partir de la membrana interna mitocondrial pueden ser aislados cinco complejos enzimáticos denominados I,II, III, IV y V. Los complejos I-IV contienen parte de la cadena de transporte de electrones, mientras que el complejo V cataliza la síntesis de ATP por lo que no es propiamente un componente de la cadena de transporte de electrones. Cada complejo acepta o dona electrones a acarreadores relativamente movibles como la coenzima Q y el citocromo c. Cada acarreador de la cadena de transporte de electrones puede recibir electrones de un donador y subsecuentemente pueden donarlos al siguiente acarreador de la cadena, finalmente se combinan con Oxígeno y protones formando agua. Este requerimiento por Oxígeno hace al proceso de transporte de electrones la cadena respiratoria, la cual utiliza la mayoría del Oxígeno consumido por un organismo aerobio.
*Coenzima q
Esta coenzima es un derivado de quinona con un largo tallo isoprenoide. Es ubicua en los sistemas biológicos por ello se denomina también ubiquinona. La CoQ puede aceptar átomos de Hidrógeno tanto del FMNH2 producido por la NADH deshidrogenasa y del FADH2 producido por la succinato deshidrogenasa en el ciclo del ácido cítrico y la acil-CoA deshidrogenasa en el metabolismo lipídico.
Con la excepción de la coenzima Q, todos los miembros de esta cadena son proteínas. Estas proteínas pueden funcionar como enzimas como en el caso de varias deshidrogenasas, pueden contener fierro como parte de su centro fierro-azufre o pueden contener cobre, como en el caso de los citocromos a y a3.
*Citrocomos
Los demás miembros del la cadena de transporte de electrones son citocromos. Cada uno contiene un grupo hemo hecho de un anillo porfirínico que contiene un átomo de fierro. A diferencia del hemo de la hemoglobina, el átomo de fierro del citocromo es reversiblemente transformado mediante oxido reducciones en su forma férrica (Fe3+) y ferrosa (Fe2+). Los electrones son pasados a los citocromos b, c y a + a3 desde la CoQ.
*Citocromo a +a3
Este citocromo es el ínico acarreador de electrones en el cual el hemo de fierro tiene un ligando libre que puede reaccionar directamente con el Oxígeno molecular. En este sitio los electrones transportados, el Oxígeno molecular y los protones libres se unen para formar agua. El Citocromo a + a3 (también llamado citocromo oxidasa) contiene átomos de cobre unidos que son requeridos para que la reacción ocurra.
-Transporte de electrones
El flujo de electrones en las reacciones de oxido-reducción es responsable, directa o indirectamente de todo el trabajo realizado en los organismos vivientes. En los organismos no fotosintéticos, las fuentes de electrones son compuestos reducidos (los alimentos); en los organismos fotosintéticos, el donador inicial de electrones es una especie química excitada por la absorción de la luz solar. El flujo de los electrones en el metabolismo es un proceso complejo, los electrones se mueven a partir de varios metabolitos intermedios a acarreadores de electrones especializados en las reacciones catalizadas por enzimas. Posteriormente, los acarreadores donan los electrones a aceptores con elevadas afinidades por los electrones, este último proceso, genera energía. Las células contienen una variedad de transductores de energía, los cuales convierten la energía del flujo de electrones en trabajo.
El transporte de electrones, es la fuente principal de energía para las actividades celulares, libera grandes cantidades de energía libre, la mayor parte de la cual se almacena en forma de ATP en la fosforilación oxidativa. Las enzimas que catalizan este proceso, son generalmente más complejas tanto estructuralmente como en su mecanismo catalítico que las enzimas de las otras vías metabólicas, y por tanto son menos conocidas.
Todos los siguientes procesos: el transporte de electrones, la energía libre de la transferencia de electrones del NADH y FADH2 al O2 vía centros redox unidos a proteínas, está acoplada a la síntesis de ATP.
Fosforilación oxidativa y síntesis de ATP
El transporte de electrones y la síntesis de ATP estaban acoplados a través de un gradiente de protones, o hidrogeniones, entre ambas caras de la membrana interna. El bombeo de protones, desarrollado por los diferentes complejos de la cadena de transporte electrónico, genera un aumento de concentración de H+ en la cara citoplasmática, y un gradiente eléctrico debido a la carga positiva movilizada por los protones hacia el exterior de la membrana.
Estos gradientes establecen una fuerza protomotriz (movedora de protones) que empuja a los hidrogeniones hacia el interior, y utilizando esta fuerza, el complejo enzimático ATP-sintasa (también denominada ATPasa mitocondrial o H+-ATPasa) formaría enlaces de alta energía en forma de moléculas de ATP.
-Síntesis de ATP
La ATP sintasa es un complejo enzimático de gran tamaño, observable a microscopía electrónica. Está formada por dos subunidades F0 , una porción hidrofóbica que atraviesa la integridad de la membrana mitocondrial interna, formada por cuatro cadenas polipeptídicas y que funcionalmente constituye el conducto de protones. La otra subunidad F1 protruye en el lado interno de la membrana, y está forma-
da por cinco clases de cadenas polipeptídicas ,α3, β3, γ, δ y ε. Su papel funcional es catalizar la formación de un enlace de alta energía, sintetizando ATP. El cuello intermedio que une ambas subunidades está formado a su vez por varias proteínas reguladoras.
El sistema mediante el cual funciona este complejo, ha permitido observar que el ATP se forma rápidamente, aún en ausencia de gradiente a través de la misma, pero la carencia de fuerza protomotriz no permite la separación del ATP formado, que permanece unido a la sintasa. Sólo el flujo de protones, la estimación es de forma aproximada de tres H+, origina la liberación de un ATP. Cada par de electrones proveniente del NADH, genera un flujo neto de protones a través del complejo I, III y IV de 4, 2 y 4 protones respectivamente, lo que se traducirá en la síntesis de 3 ATPs, la entrada de electrones a través del FADH2 genera un flujo de protones a través del complejo III y IV de 2 y 4 respectivamente, que permitirá la formación de 2 ATPs.
La velocidad con que se desarrolla la fosforilación oxidativa está marcada por las necesidades energéticas de la célula. Para que el proceso se realice de forma correcta se requiere un aporte de sustratos como NADH (o FADH2), O2, ADP y Pi siendo el más importante el ADP. La concentración intracelular de este metabolito es una medida de las necesidades de energía metabólica, y, por lo tanto, va a fijar la velocidad a la que ha de desarrollarse la fosforilación oxidativa.
Esta regulación por ADP se denomina control respiratorio, ya que el consumo de O2 por parte
de la mitocondria, es dependiente de la cantidad de ADP presente.
Según la actividad celular desarrollada, se producirá un consumo mayor o menor de ATP, generándose cantidades variables de ADP. Una concentración elevada de ADP causará un incremento en la velocidad de la respiración celular o fosforilación oxidativa, intentando de manera continua reequilibrar la relación ATP/ADP, o expresado bajo otros términos, la síntesis de ATP se realiza según va siendo requerido por las necesidades celulares.
Todas las rutas catabólicas estudiadas tienen una regulación acoplada a la fosforilación oxidativa, que se realiza a través de la carga energética; de tal manera, que hay un engranaje correcto y equilibrado entre todos los procesos productores de energía con el consumo de la misma (3).
Inhibidores y acoplantes y medición del consumo de oxígeno.
El uso de inhibidores de la cadena ha permitido trazar el paso de los electrones a través de la cadena y determinar el punto de entrada de diversos sustratos. La velocidad a la cual el oxígeno es consumido por una suspensión de mitocondrias es una medida del funcionamiento de la cadena de transporte de electrones. La velocidad puede ser medida mediante un electrodo de oxígeno.
Gran parte del conocimiento de la función mitocondrial ha resultado de estudios con compuestos tóxicos. Inhibidores específicos se han usado para distinguir el sistema de transporte de electrones del sistema de fosforilación oxidativa, y ha ayudado a definir la secuencia de los transportadores redox en la cadena. Si la cadena se bloquea en un punto, todos los transportadores anteriores quedan más reducidos, y los posteriores más oxidados.
Hay seis tipos de venenos que afectan la función mitocondrial:
1. Inhibidores de la cadena que bloquean la cadena respiratoria.
La rotenona, toxina de una planta, utilizada por indios amazónicos como veneno, también ha sido usada como insecticida. Actúa inhibiendo el complejo I. Inhibe la reoxidación del NADH, no afecta la del FADH2. Inhibe la oxidación del malato, que es dependiente del NAD+, no así la del succinato. El succinato entra en el segundo punto de entrada a la cadena, posterior al del NAD+.
El amital (barbitúrico) inhibe al complejo I, afecta las oxidaciones dependientes del NAD+.
La antimicina A (Antibiótico). Actúa a inhibiendo el complejo III. Inhibe la reoxidación del NADH y del FADH2.
El cianuro bloquea el paso de electrones del citocromo a3 al oxígeno.
Estos inhibidores detienen el paso de electrones de modo que no hay bombeo de protones. Sin gradiente de protones, no hay síntesis de ATP.
2. Inhibidores de la fosforilación oxidativa, venenos que inhiben la ATP-sintasa.
La oligomicina, un antibiótico producido por Streptomyces, inhibe a la ATPasa al unirse a la subunidad Fo e interferir en el transporte de H+ a través de Fo, inhibe por lo tanto la síntesis de ATP.
Diciclohexilcarbodiimida (DCCD), un reactivo soluble en lípidos, también inhibe el transporte de protones por Fo al reaccionar con un residuo de glutámico en una de las subunidades de Fo de mamíferos.
En estas condiciones el gradiente de protones que se produce es mayor que lo normal, sin embargo la energía potencial de éste no puede ser utilizada para producir ATP.
3. Venenos que hacen permeable la membrana mitocondrial interna a los protones. Estos agentes eliminan la relación obligada entre la cadena respiratoria y la fosforilación oxidativa que se observa en mitocondria intacto.
Estos venenos, como el 2,4 dinitrofenol (DNP), el carbonilcianuro-p-trifluorometoxi-hidrazona (FCCP) y el carbonilcianuro-m-clorofenilhidrazona (CCCP) desacoplan la fosforilación oxidativa de la cadena respiratoria, se conocen como agentes desacopladores.
Son compuestos liposolubles y ácidos débiles. Las formas disociadas presentan carga negativa altamente deslocalizada, de modo que el campo eléctrico de los aniones es muy débil, ello permite que difundan libremente a través de un medio no polar como las membranas fosfolipídicas. Este comportamiento no es usual, la gran mayoría de iones con carga son excluidos de un ambiente no polar.
Los agentes desacoplantes son todos sintéticos, sin embargo en el mitocondria del tejido adiposo pardo una proteína desacopladora (termogenina) participa en el delicado control de la termogénesis (4).
Genoma mitocondrial
El genoma mitocondrial es una molécula de ADN circular que contiene 16.569 pares de bases y codifica 13 proteínas, 2 ARN ribosomal (ARNr) y 22 ARN de transferencia (ARNt). El código genético que utiliza es degenerado, es decir, ciertos codones en la mitocondria corresponden a aminoácidos diferentes de los utilizados por el genoma nuclear. Sin embargo, depende de muchas proteínas nucleares para poder replicarse y, a su vez, muchas proteínas presentes en las mitocondrias son codificadas por el genoma nuclear.
En mamíferos, cada mitocondria contiene entre 5 y 10 moléculas idénticas de ADN, cada una de aproximadamente 16.000 nucleótidos. Dado que una célula puede tener cientos de mitocondrias, el genoma mitocondrial representa casi el 1% del genoma total. Este genoma es de suma utilidad en el estudio de ciertas enfermedades hereditarias, debido a que las mitocondrias se heredan solamente por la línea materna (ya que las mitocondrias del espermatozoide no ingresan al óvulo). Todos los hermanos nacidos de una misma madre (sean varones o mujeres) pueden ser identificados como tales analizando ciertos marcadores mitocondriales. De hecho, estos marcadores deberían ser iguales entre los hermanos de la madre –los tíos–, los primos hijos de hermanas mujeres de la madre, y así sucesivamente, siguiendo siempre la línea materna (5).
Las enfermedades mitocondriales son resultado de la falla de las mitocondrias, los compartimentos especializados presentes en cada célula del cuerpo, con excepción de los glóbulos rojos de la sangre. Las mitocondrias son las responsables de la creación de más del 90% de la energía que el cuerpo necesita para mantener la vida y apoyar el crecimiento. Cuando fallan, se genera cada vez menos energía al interior de la célula. Puede entonces presentarse lesión celular o incluso la muerte de la célula. Si este proceso se repite en todo el cuerpo, los sistemas completos comienzan a fallar y la vida de la persona que lo sufre, está en grave riesgo. Esta enfermedad afecta principalmente a los niños, pero los brotes en adultos se están volviendo más y más comunes.
Algunos ejemplos son:
CPEO: Síndrome de Oftalmoplegia Externa Crónica Progresiva.
KSS: Síndrome Kearns-Sayre.
LCHAD: Dehidrogenasa de Cadena Larga Hidoxiacil-CoA.
LHON: Neuropatía Óptica Hereditaria de Leber
MERRF: Enfermedad Epiléptica Mioclónica y Fibrosis roja.
NARP: Neuropatía, Ataxia y Retinitis Pigmentosa (6).
BIBLIOGRAFIA
(1) http://www.juntadeandalucia.es/averroes/recursos_informaticos/concurso1998/accesit6/hipotesi.html
(2) http://laguna.fmedic.unam.mx/~evazquez/0403/transporte%20de%20electrones.html
No hay comentarios:
Publicar un comentario